HEAT EXCHANGE IN A TUBE IN THE PRESENCE OF
VIBRATIONAL RELAXATION IN THE GAS

M. 8. Povarnitsyn UDC 536,244:532,542

The temperature distribution of a heat-liberating wall of a circular tube, in which a Pois~-
seuille gas flows, is obtained, The influence of nonequilibrium excitation and relaxation of
the vibrational degrees of freedom of the diatomic gas on the wall temperature is taken into
account,

When investigating high-temperature heat exchangers it is of interest to examine the influence on the
temperature distribution in the gas stream and on the walls of thermal excitation and relaxation of the vi-
brational degrees of freedom of diatomic gas molecules in frozen dissociation,

There are several papers in the literature, for example, [1-6], studying the influence on the gas tem-
perature of excitation of the vibrational degrees of freedom of molecules in gas streams flowing over a plate
or an axisymmetric body near the stagnation point, and also studies of the relaxation in shockwaves,

However, the heat exchange for the internal flow of a relaxing gas has been investigated less. The
hydrodynamically developed laminar flow in a tube is considered here, which in the case g5 = (Tg—Ty) /T,
= 0.25 and Ty = T = Tg can be described by the equations of vibrational energy transfer, heat conduction,
and dissociated atom diffusion [4]:
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where w_q = Gwymz?—Ewgm?; c is the concentration of atoms, p is the density, m, is the mass of the
molecule, The rate of production of the dissociated atoms is given by

2 c? 2
The expression for the rate of production of the vibrational energy (Z— gyr-!is of a general character, in-
dependent of the kind of molecules, the gas composition, and the excitation of the diverse oscillator levels
[1]. Further notation in (1)-(3): & is the vibrational energy of unit volume; £ is the equilibrium vibrational
energy, © = Nh'w(expo/T—1)-1 = p(R/u)0 (exp §/T—1)"1, The characteristic temperature § = h'w/k, h'y is
the energy of a vibrational quantum transition from one level to the next, We have [6]: 6 = 2240°K for Oy,
3354°K for N,, 5910°K for H,, 810°K for Cly, 4830°K for D,, Here h', k are the Planck and Boltzmann con-
stants.

It is convenient to use the following semiempirical formula [6] for the relaxation time

gL - [(%)1’3~1]. @

For example, for a number of gases Té is equal to {usec .atm): Cl,—0.265, 0,—3.95, N,—18, D,—0.128 [6],
and for these gases T = 3.211, For hydrogen [8] 'ré =1,0.10"7 sec ratm, a = 2.40.
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Estimates show that the term wy,_q for the interaction between dissociation and vibrational relaxation
can be neglected for weak digsociation {c = 0.1).

Let us consider a flow frozen with respect to dissociation in a tube with noncatalytic walls wy_gq = wy

= 0.
Hence, using dimensionless variables we deduce from (1)-(3)
de _ J% 1
L —1 1_ 2 l — —
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where
qu = th?(DOOTé)-_leXp [—_at (%\)1/3 + Oy } (T;‘—)IASI, (7)

Dy, is the coefficient of molecular self-diffusion for T = Ty and P =1 atm, o; = 2.302ap

In the temperature range under consideration Ty < T < Tg(0< ¢ < 1), as computations show, an ap-
proximation

Pp(e—e) (@ +b,% —e) (8)

can be introduced to the accuracy of several percent, Hence gy~ P2, and the coefficients ¢, by are indepen-
dent of the pressure, Substituting (8) info (5) and (6), and considering the case Le =1, let us deduce the
initial system
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with conditions on the leading edge of the tube

00,5 =1, e, H=eT)=e¢ (11)
and on the wall for £ =1
a0 e
ég = — g, (i =0. (12)

The problem (9)-(12) differs from the considered problem of heat exchange in a dissociating gas flowing in
a plane channel [9] only by its symmetry.

Let us form the function f; = $—e, for which we obtain an equation from (9)-(10):

- o 1 o

ot 082 i 713
with boundary conditions fy = 1—~eg for 7 =0, and 8f, /8¢ =—g for £ =1, The solution of the problem (13) is
equivalent to the solution of the heat conduction equation (10) with the condition ¥y = 0. To solve this tem-
perature problem let us go over to a Laplace transform in 7

— g (1—28%) = (13)

20 % _. 92
(- e — )= — 4 T R0 (14)
3 dg?
Denoting the solution of the homogeneous equation by gp(g, o), we write the complete solution of (14) thus [10]:
£ 5
0 = [d+ | ETIoTE, | Lokds, | 9 (E o), (15)
0 0
where
h=E ]+ 0 (128, (16)
o
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The homogeneous equation is similar to the Whittaker equation [10] and has the solution

¢ = exp (— ]/2&— §2)1F1 (bo: I, l/a EZ), by = 2_2/5 .

Expanding ¢ in a series shows that this is an entire function of the arguments £ and ¢ :

Sl Fe (% . a* ey, OF 8
v ik (16 )E 964§T16.64 +0(@).

The coefficient d is determined from the condition on the wall:
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Here ¢(1) = ¢(1, a); ¢'(1) = 9¢/0t for £ =1,

The value of the wall temperature in the transformed plane is

1
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We find [11]
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Hence, we deduce the temperature on the tube wall
hal e
8 D=0@—g ¥ (am+ L b,,.) exp (— oty ),
( mz=1 g
where
@ = 1F (bm 1, V“—m)/‘pm (a);
1
by = —exp (Va/2) | E(1—28) @t/ ().

0

The function ymla) is given by (46) later, The sum is taken over the roots a{a > 0) of the equation

Fy (b 1, V) — B R, (b, 2, vE) o,

— O (b, v, V),

am”

(18)

(20)

(21)

(22)

(23)

In particular, we have gy = 25.674; oy = 83.847; a3 = 174,16; a4 =—0.1986; a; =—0.06967; a3 = —0.03652;

by =—0.04032; by = —0,00881; bs =—0.00174,

Using (18) and the expansion of the function ¢'(1), let us calculate the residues of (20) multiplied by

exppT hear the pole p = 0 of multiplicity 1 and 2, which yields
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Furthermore, let us calculate the temperature of the tube walls taking account of excitation of the
vibrational gas energy at g, = 0. The solution of (13) for the function f = f;(1—e) -1 reduces to solving the
temperature problem (15), (19) using the substitution g' = g(l—-eo)-i. We deduce

, g9 2
[*@E @) = + (25)
o (0p/0E)s—y |
After eliminating the vibrational energy by using f;, the equation for the temperature (9) is
v 1 )
(l*gg)g T 0€+5§+¢0(a+bﬁ+f1(r §)) (26)

under the conditions (11), (12). Here b = by—1. The Laplace transform of (26) in 7 yields the equation

&9+ 1 do* ap .
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Let us write the solution of the homogeneous equation [10]
_ Va ) 2 1 b, +- o
=€ by, 1, by = — — X
Pe xp( o LVa 8, by= e (28)

The solution of the inhomogeneous equation (27) is given by (15) with ¢ replaced @y and h by

h¢=32_1+91’_° — (29)
Since the walls are noncatalytic (12), then the expression for the coefficient d is given by (19) with the sub-
stitutions mentioned,

The gas at the entrance is in thermodynamic equilibrium. Hence, g +vy + y{l—eg) = 0, where g = by,,
Y = ay. Using the mentioned equality and the condition ¢* = —a 1 for g = 0, we find the wall temperature
in the transformed plane

sy — L —3/2 [ Bexp (V' /2) \g‘ J
4% (1) = -+ (b, LVa p d
o . e b @)+ 5 09/05), Epyopdf
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First let us calculate the developed temperature distribution, Let us find the residues at the pole o = 0, for
which we obtain the expansions
Filbe, L, Va)=hy+0 Vo +hat ...,
1F1 (bﬂh 2’ V&’_) :lf() +f1-l/_&—+ f2a + ey

31)

where in particular

ho (ﬁ) =J, (VE)» hl = h0/2,
fo= Qﬁ“l/z']l (Vﬁ—): f= ﬁ*l/z [A(VE) -23*1/2 Jy (1/5)] .

Let My denote the second and TI, the third member in (30) and let us establish their behavior near the pole
o =0, We obtain the expansion needed

(32)

[1 =~ s [+ (g —a— 2 ) atoe ], 3)

(a—>0)
where g = 0.5—f,f71, a, = hyhy?—hihg? + f,(2f)) 1,671,

To obtain [, {e, B), let us expand the functions ¢, 2 in a series in o

>0

£
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Let us form

—_

S PyEdE = V 5 5 (VB) + o8 + 0(a). (35)

1
Remarking that { hydg = 0.5f,(ar), We obtain from (34)
0

DR B N\ D Vit i 1 1
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n=0,1,...

11

We hence find the needed expansion

1T = 8¢ PpL(VB)+eE+0(d) E7
@l O I+ ax, + 0(?) '

__ 19 v/t fN, B+ a8
Yo = 96+2(2 ) 9

Multiplying 1 and T, from (33) and (37) by exppr and evaluating the residues at the pole ¢ = 0, we derive
an expression for the asymptotic wall temperature (r> 1)

9@ _ 4 (g VE_ _ _LB) 4 39)
g ( 5L (VB) "°) VBL(VE) b (
Substituting (36) and (38) into (39), we notice that the function f,(8) is eliminated. We derive

[1—0"(1:)] gl=c —4b?, (40)
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The undeveloped wall temperature distribution is given by the formula ${r) = 30 + 91r), where $l¢) is deter-
mined by the sums of residues of the expressions (1Iy + IIy) X exppr over the roots q, oMo, o > 0) of the equa-
tions

Fy by, 1, Va)— (14+ 2L F, (b, 2, V&) =0, (42)
2Va
70 — o0 91/ P — !
£ (VS va) 2V g (2 2y ) <o, (43)
obtained by equating the denominators of 1iy and 11, in (30) to zero. The solution for the wall is written as
1;;—@ =, — 4% + 2 [am exp (— a,,7) +- af, exp (— &) 7)] , (44)
m=1

where
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k=1
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Fig. 1. Dimensionless temperature of a tube wall without taking account
of vibrational relaxation for different intensities of heat evolution due to
internal friction and the work of pressure forces.

Fig. 2, Dimensionless temperature of a tube wall for different values of
the reaction rate constant for excitation of molecule vibrations and the an-
gular coefficient b: 1) g =—0.2; 2) —5; 3) —70,

k T _
WO == 2Va 5 E (b+1—1)t.

=1

For brevity the subscript m is omitted in (45) and (46).

The distribution of the dimensionless wall temperature (1—-8)g=! obtained by (22) is givenin Fig, 1 as
a function of the coordinate r and the ratioey/g characterizingtheheattointernal friction and the work of
the pressure forces. Excitation of molecule vibrations is not taken into account here, The dependence
[1—19(1-)]g‘1 computed by means of (40)-(46) is shown in Fig, 2 for different values of the parameters g and
b characterizing the nonequilibrium rate of the excitation and relaxation processes for molecule vibrations.
These processes are excluded for b =—1, As the rate of excitation grows (|g{ ~ P2 grows), the wall tem-
perature is reduced noticeably.

NOTATION
by is the angular coefficient of the approximation (8);
b =by—~1; by= (2—Ya)/4; by =1/2—@ + o)/4V0;
Dy,, Dyy are coefficients of self and mutual diffusion;
e = &/pgep(Tg—Ty) is the dimensionless vibrational energy;
& = (y—1)0 /Ty 0y (exp 6/T)~1);
Ep is the dissociation energy of a mole of gas;
E is the energy of the mean molecule level at which atoms
recombine;

f,=d~e, f=f(1—e)"};

Iy, v, x) is a degenerate hypergeometric function;

is the energy of the mean molecule level from which
dissociation occurs;

is the heat flux density at the wall;

Ql

G
g = GR/MTg—Ty);

P is the pressure;

p is the variable in the Laplace transform;
R is the tube radius

0
T

=r=R;
is the temperature in the tube;

Ty=T = Tg;
Ty is the temperature at the channel entrance;
Tg is the previously selected temperature;
(Tg—Ty) Tyl =6, = 0.25;
u is the longitudinal velocity;
Uy is the mean velocity;
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X is the coordinate along the tube;

a=-=p; B=hbd; v=cp/ey;

g€ is the vibrational energy of a unit volume;

gy = 16M*Pr{y—1)6;%; '

is the coefficient of heat conduction of the gas;
is the velocity;

is the molecular weight;

A

n

u

4= (Tg—T)/(Tg—Ty); #*= Jexpl~p7dT;
Ty is the vibrational relaxation time;
T =

x/2RPrRe; t=r/R; Le = Pr = cph'l'n; Sc = 1/pDyy

Re = PUmRﬂ—i is the Reynolds number taken for mean values of
the temperature and pressure is the channel;
Jn is the Bessel function.
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